Effect of Firing Temperature on the Electrochemical Performance of Nanocapsule-like LiMn_{0.5}Fe_{0.5}PO₄/C Cathode Materials for Li-Ion Batteries ผลของอุณหภูมิในการเผาต่อสมบัติทางไฟฟ้าเคมีของวัสดุแคโทด LiMn_{0.5}Fe_{0.5}PO₄/C ที่มีโครงสร้าง จุลภาคคล้ายแคปซูลสำหรับแบตเตอรี่ชนิดลิเทียมไอออน

Phongsit Krabao (พงษ์สิทธิ์ กระเบา)* Dr.Sarawut Pongha (คร.ศราวุธ ป้องหา)**

Dr. Thanusit Burinprakhon (ดร.ธนูสิทธิ์ บุรินทร์ประโคน)*** Dr. Nonglak Meethong (ดร.นงลักษณ์ มีทอง)****

ABSTRACT

Olivine $\text{LiMn}_x \text{Fe}_{1-x} \text{PO}_4$ cathode materials received high structural and chemical stabilities and high voltage. However, their major disadvantage is low electrical conductivity. In this article, effects of firing temperature that influences the structural, morphological, and electrochemical properties of $\text{LiMn}_x \text{Fe}_{1-x} \text{PO}_4$ and carbon composites have been investigated. X-ray diffraction technique was used to show that the $\text{LiMn}_x \text{Fe}_{1-x} \text{PO}_4$ materials were successfully synthesized by a solvothermal method. Scanning electron microscopy was used to show that the materials were in the nanometer size scale and had capsule-like morphology consisting of the $\text{LiMn}_x \text{Fe}_{1-x} \text{PO}_4/\text{C}$ nanocrystals distributed in the continuous carbon matrix leading to high electrical conductivity. Raman spectroscopy was used to study the crystallinity of the carbon phase and showed that the material fired at 600 °C provided the highest degree of graphitization. The graphite formation in a combination of the capsule-like nanostructures lead to high charge / discharge capacities of these materials. The highest discharge capacity is found to be 154 mAh.g⁻¹ at a C/10 rate and was resulted from the sample fired at 600 °C for 6h.

บทคัดย่อ

วัสดุแกโทด LiMn_xFe_{1-x}PO₄ เป็นวัสดุที่มีกวามเสถียรสูงและมีก่าศักย์ไฟฟ้าที่สูง แต่มีข้อเสีย คือ มีความนำ ไฟฟ้าที่ต่ำ ในบทกวามนี้ ได้ศึกษาผลกระทบของอุณหภูมิในการเผาที่มีอิทธิพลกับคุณสมบัติทางไฟฟ้าเกมีของวัสดุ LiMn_{0.5}Fe_{0.5}PO₄ กอมพอสิตกับวัสดุการ์บอน จากการตรวจสอบด้วยเทกนิกการเลี้ยวเบนของรังสีเอกซ์ พบว่าวัสดุนี้ สามารถถูกสังเกราะห์ด้วยวิธี solvothermal ได้สำเร็จ โดยภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดพบว่า วัสดุมีขนาดอนุภากระดับ 100 นาโนเมตร และมีรูปร่างกล้ายแกปซูล ที่ประกอบขึ้นจากผลึกนาโนของวัสดุ LiMn_xFe₁₋ _PO₄/C ที่กระจายตัวอยู่ในเมทริกของวัสดุการ์บอนอีกชั้นหนึ่ง จากผลการวิเกราะห์ด้วยเทกนิกรามานสเปกโตรสโกปี พบว่าที่อุณหภูมิในการเผา 600 องศาเซลเซียส การ์บอนที่เกลือบมีความเป็นผลึกมากที่สุด และนำไปสู่ผลการอัดประจุ/ กายประจุของวัสดุมีความจุขณะกายประจุสูงถึง 154 mAh.g⁻¹ ที่อัตราการอัดประจุ C/10 (10 ชั่วโมง)

Keywords: LiMn_{0.5}Fe_{0.5}PO₄ composite material, Carbon coating, Raman spectroscopy คำสำคัญ: วัสดุคอมโพสิต LiMn_{0.5}Fe_{0.5}PO₄ การเคลือบด้วยคาร์บอน รามานสเปกโตรสโกปี

^{*} Student. Master Degree in Physics, Department of Physics, Faculty of Science, Khon Kaen University

^{**} Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University

^{***} Assistant Professor, Department of Physics, Faculty of Science, Khon Kaen University

^{****} Assistant Professor, IN-RIE and Department of Physics, Faculty of Science, Khon Kaen University

Introduction

Lithium-ion batteries (LIBs) are one of the key technologies that enable consistent and continuous electrical power for users since the beginning of their existence in 1997. LIBs constituted an essential power sources for portable electronic devices such as laptop computers, cellular phones, digital cameras, and electric vehicles because of their advantage of high energy density. Olivine-typed $LiMPO_{A}$ compounds (M = Co, Fe, Mn, Ni) are one of the most studied cathodes in the battery community because they have shown good charge/discharge characteristics, good capacity, and high voltages (3.4 V for Fe, 4.2 V for Mn, 4.8 V for Co, and 5.1 V for Ni). However, Co and Ni compounds toxic and expensive, respectively. Therefore, LiMnPO₄ and LiFePO₄ are more attractive among of all of the olivine-type cathode materials. Of these two, the latter, $LiFePO_4$, was heavily investigated and now is one of the most widely used materials in LIBs due to its simples synthesis, environmental friendliness, high theoretical capacity (170 mAh.g⁻¹), and low cost (Padhi et al., 1997: Yamada et al., 2001). However, it is well established that LiFePO4 has poor electrical conductivity and carbon coating is a common method used with this material to increase its electrical conductivity. Among the LiMPO₄ compounds studied, LiFePO₄ shows a lower voltage, about 3.4 V vs. Li+/Li. If the voltage of the cathode is increased, the overall energy density of the LIBs using this cathode material will be increased. The main objective of this work to increase the voltage and electrical conductivity of LiFePO₄ by a combination of carbon coating and partially replacing iron ions (Fe²⁺) with manganese ions (Mn^{2+}) to form LiMn₂Fe₁ $_{PO_4}/C$ compounds. Mn²⁺ can raise the voltage of the LiFePO₄ compound because the Mn³⁺ /Mn²⁺ redox couple normally occurs at a higher voltage of 4.1 V vs Li^+/Li while the $\text{Fe}^{3+}/\text{Fe}^{2+}$ couple occurs at a voltage of only about 3.4 V vs Li^+ /Li (Padhi et al, 1997: Yamada et al, 2001).

The LiMn_xFe_{1-x}PO₄/C compound where x = 0.5, was found to be the most suitable for high specific capacity as well as high rate capability, and this material been extensively studied in recent years. Many preparation techniques were used to synthesize LiMn_{0.5}Fe_{0.5}PO₄/C materials such as a hydrothermal method (Avendaño et al., 2014: Xiang et al., 2015), a coprecipitation method (Min Oh et al., 2011: Xiang et al., 2015: Xiang et al., 2016), a sol-gel method (Liu et al., 2017), solid state method (Yamada et al., 2001: Zaghib et al., 2008: Zong et al., 2013: Liu et al., 2014: Li et al., 2015), and a spray drying method (Chen Yang et al., 2016). Recently, a solvothermal method was introduced to synthesize this material (Saravanan et al., 2011: Huang et al., 2013: Di Lecce et al., 2015: Yuan Yan et al., 2015: Kosova et al., 2018) due to the ability to control the synthesis conditions to form various morphological structures with improved electrochemical performance. For example, Yuan Yan et al. (2015) showed that a nano-sponge materials could deliver a discharge capacity of 150 mAh g⁻¹ at a C/10 rate using a carbon-coating of 15 wt.%. Kosova et al. (2018) reported that a material with hexagonal nano-plates morphology gave a discharge capacity of 97 mAh.g⁻¹ at a C/10 rate by using a carbon-coating of up to 20 wt.%. As can be seen, this material can have promising electrochemical performance but still requires a high degree of carbon coating.

In this article, we report of our successful synthesis of a new nanostructured $\text{LiMn}_{0.5} \text{Fe}_{0.5} \text{PO}_4/\text{C}$ material having a capsule-like morphology comprised of $\text{LiMn}_{0.5} \text{Fe}_{0.5} \text{PO}_4/\text{C}$ nanocrystals homogeneously distributed in the continuous carbon matrix using a solvothermal method. The amount of carbon used in this material was about 5-10 wt.%, which is much lower than reported in previous studies. The effect of firing temperatures on the crystal structure, morphology, and carbon

molecular bonding structure of these materials was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The results were used to explain the improved electrochemical performance of this material.

Objectives of the study

The aim of this research was to study the influence of firing temperature on the electrochemical properties of the capsule-like nanostructures of $\text{LiMn}_{0.5}$ Fe_{0.5} PO₄ (LMFP)/C cathode materials for lithium-ion batteries.

Methodology

Preparation of LiMn_{0.5} Fe_{0.5}PO₄/C

Materials: LiMn_{0.5}Fe_{0.5}PO₄ (LMFP) powder was synthesized by solvothermal method (depicted in Fig. 1) using a mixure of ethanediol (EG)-and de-ionized water (DI) as a solvent. Lithium hydroxide monohydrate, LiOH.H₂O (98% purity, Sigma-Aldrich), manganese (II) sulfate monohydrate, MnSO₄.H₂O (99% purity, QRëC), iron (II) sulfate heptahydrate, FeSO₄.7H₂O (99.5% purity, QRëC), and orthophosphoric acid, H₃PO₄ (85% purity, Ajax Finechem) in a Li:Mn:Fe:PO₄ molar ratio of 3:0.5:0.5:1 were dissolved in the EG-DI solvent (4:1 by volume). LiOH was dissolved in EG to form Solution A, while MnSO₄.H₂O, FeSO₄.7H₂O and glucose were dissolved in DI water with sonication for 1 h to form Solution B under an Argon gas environment. Then, H₃PO₄ was slowly dropped into Solution B under slowly with stirring for 10 mins. Next, Solutions A and B were stirred together for 10 mins and transferred into a 50 ml Teflon-line stainless steel autoclave under Argon gas environment. The mixture was heat-treated to 185 °C for 18 h to yield crystalline LiMn_{0.5}Fe_{0.5}PO₄/C particles. After that the LiMn_{0.5}Fe_{0.5}PO₄ /C particles were centrifuged and vacuum-dried at 80 °C overnight. The obtain particles were mixed with 5 wt.% glucose in DI water with sonication for 30 mins. The mixture was freeze-dried at -48 °C overnight. The collected powders were calcined at 300 °C for 6 h followed by firing at 500 °C (LMFP_500 °C), 600 °C (LMFP_600 °C), and 700 °C (LMFP_700 °C) for 6 h with a heating rate of 5 °C/min under an Argos atmosphere.

20th NGRC การประชุมวิชาการเสนอผลงานวิจัยระดับบัณฑิตศึกษาแห่งชาติ ครั้งที่ 20 ^{ภันที่} 15 มีนาคม 2562 ณ มหาวิทยาลัยขอนแก่น PMO13-4

Fig. 1 Flow chart of synthesis process for fabrication of $LiMn_{0.5}Fe_{0.5}PO_4$, LMFP_500°C, 600°C and 700°C.

Characterization

The crystalline phase of the synthesized samples was examined using an X-ray diffraction (XRD) analyzer (EMPYREAN, PANalytical) over a $2\square$ arange of $10^{\circ} - 80^{\circ}$ at a scan rate 10° per min with a step size of 0.02° . The morphology, particle size, and particle size distribution of the samples were observed with scanning electron microscopy (SEM) (Ziess, Auriga), and the crystalline carbon coating was investigated using Raman spectroscopy. The equipment used in this portion of the study is located in the Research Instrument Center, Khon Kaen University, Thailand.

Electrode preparation and measurement

Each of the $\text{LiMn}_{0.5}\text{Fe}_{0.5}\text{PO}_4/\text{C}$ powders was mixed with conductive carbon black (Super P), and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 73:13:14 using 1-methyl-2-pyrrolidone (NMP) as a solvent. The slurry was coated on an aluminum foil current collector and dried in a vacuum oven at 80 °C overnight before use as electrodes. Then, the dried electrodes were punched into circular dishes and compressed with hydraulic pressure of 20 kPa. The apparatus was assembled using a coin-typed cell (CR2032), using lithium metal as the negative electrode, the dried circular electrode as a cathode, and a bi-layer PE/PP membrane (Celgard) as a separator. The electrolyte consisted of 1 M LiPF₆ dissolved in dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), ethylene carbonate (EC) in a 1:1:1 volume ratio. The cells were assembled in a glove box under an Ar gas atmosphere.

The electrochemical properties of the cells were investigated by using a battery testing system (Austin, TX, USA), at a charge/discharge rate of C/10 between 2.2 V to 4.6 V.

Results and Discussion

Characterization of the LiMn_{0.5}Fe_{0.5}PO₄/C

Fig. 2 shows XRD patterns of the $LiMn_{0.5}Fe_{0.5}PO_4$ /C powders after firing at 500 °C, 600 °C, and 700 °C for 6 h. After comparing diffraction peaks with the reference pattern of pure olivine-type crystalline material (PDF# 00-011-0456), all samples showed only the diffraction peaks of the orthorhombic structure with Pnma space group of the LiFePO₄–LiMnPO₄ solid solution. This result confirms that pure phase olivine-type LiMn_{0.5}Fe_{0.5}PO₄ materials were successfully synthesized by the solvothermal method.

Fig. 2 XRD patterns of the LiMn_{0.5}Fe_{0.5}PO₄ /C powders after firing at 500 °C, 600 °C and 700 °C, respectively.

Fig. 3 shows typical SEM images of the LiMn_{0.5}Fe_{0.5}PO₄/C powders synthesized at 500 °C, 600 °C and 700 °C, respectively. As can be seen, all samples show a capsule-like morphology with approximate dimensions of 100 \pm 20 nm (length) and 50 \pm 20 nm (width). Each of the capsule-liked particle consists (Fig. 4b and 4c) of several carbon-coated LiMn_{0.5}Fe_{0.5}PO₄ nanocrystals (Fig. 4a) formed inside a continuous matrix of carbon as is represented in the schematic drawing in Fig. 4. This special morphology should have a positive impact on the electrochemical performance of this material, as is discussed below. At the two lower temperatures, 500 °C and 600 °C, the capsule-like particles are quite homogeneous with a narrow particle size distribution. The sample fired at 600 °C has slightly more uniform nanostructures than the sample fired at 500 °C. As the firing temperature was increased to 700 °C, the particles became broken, with slightly increasing particles size to around 100-120 nm. Agglomerated nanocrystals appear to be expose outside of the continuous carbon matrix (as represented by Fig. 4c) which will had a negative impact on the electrochemical properties of this sample. Therefore, firing temperature has an influence on the morphology of the capsule-liked LiMn_{0.5}Fe_{0.5}PO₄ /C materials, and impacted the electrochemical properties of these materials.

Fig. 3 Scanning electron microscopy (SEM) images of the LiFe_{0.5} Mn_{0.5} PO₄/C samples fired at (a) 500 °C (b) 600 °C and (c) 700 °C, respectively.

Fig. 4 Schematic of the nanocapsules consisting of carbon-coated $\text{LiFe}_{0.5} \text{Mn}_{0.5} \text{PO}_4$ nanocrystals encapsulated by continuous carbon matrix. The nanocapsules are more uniform when fired at 600 °C, and the nanostructures are broken when fired at higher temperatures.

To further investigate the effect of firing temperature, Raman spectroscopy was employed to explore the molecular structure of the carbon phases in the LiFe_{0.5} Mn_{0.5} PO₄/C samples (Fig. 5). The Raman spectroscopy technique is an effective method to characterize the detailed bonding structure of carbon nanomaterials. Raman spectra of carbon usually show two distinct peaks – the so called D band (due to disordered carbon features) and G band (due to the ordered graphitic carbon features). Therefore, the intensity ratio or I_D/I_G ratio represents the degree of graphitization of carbon in the reaction products (Doeff et al., 2003). As can be seen, all samples show two apparent peaks at 1350 cm⁻¹ (the D band) and at 1575 cm⁻¹ (the G band). The I_D/I_G ratio varied in all samples and was equal to 2.83, 2.51 and 2.81 for the samples fired at 500 °C, 600 °C, and 700 °C, respectively. This result means that the sample fired at 600 °C showed the highest degree crystallinity of carbon in the graphite form, which can enhance the electronic conductivity of the LiFe_{0.5} Mn_{0.5} PO₄/C materials. This is consistent with previously reported results (Dhaybi et al., 2018).

Fig. 5 Raman spectra of the LiFe_{0.5} $Mn_{0.5}$ PO₄/C samples fired at (a) 500 °C, (b) 600 °C, (c) 700 °C.

Electrochemical properties

Fig. 6 shows the charge/discharge profiles of the LiFe_{0.5} $Mn_{0.5} PO_4/C$ samples fired at 500 °C, 600 °C and 700 °C using an operating voltage window of 2.2 – 4.6 V at a C/10 rate. All samples show two plateau features at about 3.5 V and 4.1 V representing the redox reactions of Fe^{2+/3+} and Mn^{2+/3+}, respectively. This result indicates that all of the synthesized LiFe_{0.5} $Mn_{0.5} PO_4/C$ samples with capsule-like nanostructures exhibited excellent electrochemical performance. It is notable that these samples contained only about 5 to 10 wt% of carbon, which is much lower than 20 wt.% carbon commonly used in previous work (Kosava et al, 2018).

Additionally, the samples fired at 500 °C, 600 °C and 700 °C delivered discharge capacities of 146, 154 and 140 mAh g⁻¹, respectively. The sample fired at 700 °C showed the lowest discharge capacity while the samples fired at 600 °C gave the highest discharge capacity. This result is consistent with SEM images showing that the sample fired at 600 °C presents the most uniform and homogeneous distribution of the LiFe_{0.5} Mn_{0.5} PO₄/C nanocrystals in a carbon matrix, while the sample fired at 700 °C shows broken particles with non-uniform morphology. The sample fired at 600 °C also shows the highest degree of graphitization an indicated by the Raman spectroscopic study, which should contribute to its highest electrical conductivity resulting in the greatest discharge capacity. This means that use of the capsule-liked nanostructures synthesized in this work is an effective strategy to improve the electrochemical performance of the LiFe_{0.5} Mn_{0.5} PO₄/C materials.

Fig. 6 Charge/discharge profiles of the $LiFe_{0.5}Mn_{0.5}PO_4/C$ samples at C/10 rate.

Conclusions

 $LiFe_{0.5} Mn_{0.5} PO_4/C$ powders can be synthesized by a solvothermal method. The materials show capsule-like morphology consisting of nanocrystals of $LiFe_{0.5} Mn_{0.5} PO_4/C$ homogeneously distributed in a conductive carbon matrix. Firing temperature influences the morphology and well as the degree of graphitization of the carbon phases resulting in different electrochemical performance. A discharge capacity of as high as 154 mAh.g⁻¹ at a C/10 rate with only 5-10 wt.% of added carbon addition can be obtained from a $LiFe_{0.5} Mn_{0.5} PO_4/C$ sample with this distinctive morphology. This means that use of the capsule-liked nanostructures synthesized in this work is an effective strategy to improve the electrochemical performance of $LiFe_{0.5} Mn_{0.5} PO_4/C$ materials.

Acknowledgements

This work has been supported by the Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University and the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Research Network NANOTEC (RNN). P.K. gratefully acknowledges the Science Achievement Scholarship of Thailand (SAST) under collaboration with Khon Kaen University for the financial support.

References

- A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997; 144(4): 1188-1194.
- Atsuo Yamada, S. C. Chung, K. Hinokuma. Optimized LiFePO₄ for Lithium Battery Cathodes. Journal of The Electrochemical Society 2001; 148(3): A224-A229.
- Atsuo Yamada, Sai-Cheong Chung. Crystal Chemistry of the Olivine-Type Li(Mn_yFe_{1-y})PO₄ and Mn_yFe_{1-y}PO₄ as Possible 4 V Cathode Materials for Lithium Batteries. Journal of The Electrochemical Society 2001; 148: A960-A967
- Chun-Chen Yang, Wei-Houng Chen. Microsphere LiFe_{0.5}Mn_{0.5}PO₄/C composite as high rate and long-life cathode material for lithium-ion battery. Materials Chemistry and Physics 2016; 173:482-490.
- Daniele Di Lecce, Jusef Hassoun. Lithium Transport Properties in $LiMn_{(1-\alpha)}Fe_{\alpha}PO_{4}$ Olivine Cathodes, The Journal of Physical Chemistry 2015; 119(36): 20855-20863.
- J. Nava. Avendaño, M.R. Palacín, J. Oró-Solé, A. Ponroucha, J. -M. Tarascon, N. Recham. High temperature electrochemical performance of hydrothermally prepared LiMn_{1-x} M_xPO₄ (M = Fe, Mg). Solid State Ionics 2014; 263: 157-160.
- Jun Zong, Qingwen Peng, Jinpeng Yu, Xingjiang Liu. Novel precursor of Mn(PO₃(OH)).3H₂O for synthesizing LiMn_{0.5}Fe_{0.5}PO₄ cathode material. Journal of Power Sources 2013; 228: 214-219.
- K. Zaghib, A. Mauger, F. Gendron & M. Massot, C. M. Julien. Insertion properties of LiFe_{0.5}Mn_{0.5}PO₄ electrode materials for Li-ion batteries. Ionics 2008; 14: 371-376.
- Kuppan Saravanan, Vishwanathan Ramar, Palani Balaya, Jagadese J. Vittal. Li($Mn_xFe_{1-x}PO_4/C$ (x = 0.5, 0.75 and 1) nanoplates for lithium storage application. J. Mater. Chem. 2011; 21: 14925-14935.
- Liying Liu, Guiyuan Chen, Bingtian Du, Yanyan, Cui, Xi Ke, Jun Liu, Zaiping Guo, Zhicong Shi, Haiyan Zhang, Shulei Chou. Nano-sized cathode material LiMn_{0.5}Fe_{0.5}PO₄/C synthesized via improved sol-gel routine and its magnetic and electrochemical properties. Electrochimica Acta 2017; 165:1-46.
- M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Effect of surface carbon structure on the electrochemical performance of LiFePO₄. Electrochem. Solid State Lett. 2003; 6(10): A207-A209.
- Nina V. Kosova, Olga A. Podgornova, Anton K. Gutakovskii. Different electrochemical responses of LiFe_{0.5}Mn_{0.5}PO₄ prepared by mechanochemical and solvothermal methods. Journal of Alloys and Compounds 2018; 742: 454-465.

- Sana Dhaybi, Benoît Marsan. LiFe_{0.5}Mn_{0.5}PO₄/C prepared using a novel colloidal route as a cathode material for lithium batteries. Journal of Alloys and Compounds 2018; 737: 189-196.
- Seung-Min Oh, Seung-Taek Myung, Yong Seok Choi, Kyu Hwan Oh, Yang-Kook Sun. Co-precipitation synthesis of micro-sized spherical LiMn_{0.5}Fe_{0.5}PO₄ cathode material for lithium batteries. J. Mater. Chem. 2011; 21: 19368-19374.
- Shanshan Li, Zhi Su, Arzugul Muslima, Xiaokang Jiangb, XinyuWang. Preparation and electrochemical properties of LiMn_{1-x}Fe_xPO₄ /C composite cathode materials for lithium ion batteries. Ceramics International 2015; 9: 11132-11135.
- Su-Yuan Yan, Cheng-Yang Wang, Rong-Min Gu, Ming-Wei Li. Enhanced kinetic behaviors of LiFe_{0.5}Mn_{0.5}PO₄/C cathode material by Fe substitution and carbon coating. J Solid State Electrochem 2015; 19: 2943-2950.
- Tao Liu, Binbin Wu, XiaodongWu. Realizing Fe substitution through diffusion in preparing LiMn_{1-x}Fe_xPO₄ C cathode materials from MnPO₄·H₂O. Solid State Ionics 2014; 254: 72-77.
- Weifeng Huang, Shi Tao, Jing Zhou, Cheng Si, Xing Chen, Wei Huang, Chuanhong Jin, Wangsheng Chu, Li Song,
 Ziyu Wu. Phase Separations in LiMn_{1-x}Fe_xPO₄: A Random Stack Model for Efficient Cathode Materials.
 The Journal of Physical Chemistry C 2014; 118: 796-803.
- Wei Xiang, Yan-Jun Zhong, Jun-Yi Ji, Yan Tang, HuiHui Shen, Xiao-Dong Guo, Ben-He Zhong, Shi Xue Douc,
 Zhi-Ye Zhang. Hydrothermal synthesis, evolution002C and electrochemical performance of LiMn_{0.5}Fe_{0.5}PO₄ nanostructures. Phys.Chem.Chem.Phys 2015; 17: 18629-18637.
- Wei Xiang, En-Hui Wanga, Ming-Zhe Chena, Hui-Hui Shena, Shu-Lei Chouc, Hong Chenb, Xiao-Dong Guoa,c,
 Ben-He Zhonga, Xinlong Wanga. Hierarchical structured LiMn_{0.5}Fe_{0.5}PO₄ spheres synthesized by template engaged reaction as cathodes for high power Li-ion batteries. Electrochimica Acta 2015; 178: 353-360.
- Wei Xiang, Zhen-Guo Wu, En-Hui Wang, Ming-Zhe Chen, Yang Song, Ji-Bin Zhang, Yan-Jun Zhong, Shu-Lei Chou, Jian-Hong Luo, Xiao-Dong Guo. Confined synthesis of graphene wrapped LiMn_{0.5}Fe_{0.5}PO₄ composite via two step solution phase method as high performance cathode for Li-ion batteries. Journal of Power Sources 2016; 329: 94-103.