An Investigation on Mechanism and Electrochemical Property of Manganese Oxide (Mn₃O₄) Electrode Materials for Supercapacitor Applications การติดตามกลไกและสมบัติทางเคมีไฟฟ้าของขั้วไฟฟ้าแมงกานีสออกไซด์ สำหรับการประยกต์ใช้เป็นตัวเก็บประจไฟฟ้ายิ่งยวด

Tanapom Kongthong (ธนภรณ์ กองทอง)* Dr. Nonglak Meethong (ดร.นงลักษณ์ มีทอง)**

Dr. Jedsada Sotipinta (ดร. เจษฎา โสตถิปิณฑะ)***

ABSTRACT

The nanocrystals of Mn_3O_4 were synthesized by polyol synthesis via a simple solvothermal process. The as prepared product exhibited a spherical shape or nanoball. The morphology and chemical components of the assynthesized samples were characterized by XRD, FIB-SEM, HR-TEM, N_2 adsorption-desorption isotherm (specific surface area), Raman and X-ray absorption spectroscopy (XAS), respectively. The electrochemical properties were measured by using a three electrode configuration in 1 M NaSO₄ and the mixture solution between 25 mM $K_3[Fe(CN)_6]$ and 0.1 M KOH. The CV and the galvanostatic charge-discharge curves were recorded to investigate the pseudocapacitive behavior of the electroactive materials. From the CV curves, as-synthesized Mn_3O_4 nanosphere showed a specific capacitances of 63.5 Fg⁻¹ at 2 mV.s⁻¹ in 1 M Na_2SO_4 and 154.2 Fg⁻¹ at 5 mVs⁻¹ in the mixture of 25 mM $K_3[Fe(CN)_6]$ and 1 M KOH, respectively. Whereas, the GCD curves this materials showed a high specific capacitance of 395 Fg⁻¹ at 0.1 Ag⁻¹ in the mixture solution. Based on these promising characteristics, the as-prepared Mn_3O_4 could be a potential candidate for the electrode material in supercapacitors.

าเทคัดย่อ

โครงสร้างแบบ nanocrystals ของ Mn_3O_4 สังเคราะห์โดยการสังเคราะห์โพลิออลผ่านกระบวนการโซลโว เทอร์มอล ผลิตภัณฑ์ที่เครียมได้มีรูปร่างเป็นทรงกลมหรือ nanoball สัณฐานวิทยาและองค์ประกอบทางเคมีของตัวอย่าง ที่ได้วิเคราะห์โดยเทคนิค XRD FIB-SEM HR-TEM N_2 adsorption-desorption isotherm (พื้นที่ผิวจำเพาะ) Raman และ X-ray absorption spectroscopy (XAS) ตามลำดับ คุณสมบัติทางเคมีไฟฟ้า วัดโดยอิเล็กโทรดแบบสามขั้ว ใน 1 M Na_2SO_4 และสารละลายผสมระหว่าง 25 mM K_3 [Fe(CN) $_6$] และ 0.1 M KOH โดยกราฟ CV และ galvanostatic เป็นการ บันทึกกลไกลดูพฤติกรรมแบบ pseudocapacitive ที่เป็น electroactive ของวัสดุ จากกราฟ CV Mn_3O_4 nanosphere ที่ สังเคราะห์ได้แสดงความสามารถในการเก็บค่าความจุเฉพาะเท่ากับ $63.5~\mathrm{Fg}^{-1}$ ที่ $2~\mathrm{mVs}^{-1}$ ใน $1~\mathrm{M}~\mathrm{Na}_2SO_4$ และ $154.2~\mathrm{Fg}^{-1}$ ที่ $5~\mathrm{mVs}^{-1}$ ในสารละลาย $25~\mathrm{mM}~\mathrm{K}_3$ [Fe (CN) $_6$] และ $1~\mathrm{M}~\mathrm{KOH}$ ตามลำดับ ในขณะที่กราฟ GCD ของวัสดุแสดงถึง ค่าการเก็บประจุสูง $395~\mathrm{Fg}^{-1}$ ที่ $0.1~\mathrm{Ag}^{-1}$ ในสารละลายผสม จากแนวโน้มของลักษณะเหล่านี้ของ Mn_3O_4 ที่เตรียมได้อาจ เป็นตัวเลือกที่มีศักยภาพสำหรับวัสดุอิเล็กโทรดในซูเปอร์คาปาซิเตอร์

Keywords: Supercapacitors, Manganese Oxide, Polyol Synthesis คำสำคัญ : ซูเปอร์คาปาซิเตอร์ แมงกานิสออกไซค์ การสังเคราะห์พอถิออล

^{*} Student, Master of Science in Applied Bioresource Science Program, Faculty of Applied Science and Engineering, Khon Kaen University
Nong Khai Campus

^{**} Associate Professor, Department of Physics, Faculty of Science, Khon Kaen University

^{***} Associate Professor, Department of Chemistry, Faculty of Applied Science and Engineering, Khon Kaen University Nong Khai Campus