Higher Dietary Protein Intake Does Not Potentiate Training-induced Improvements in Lean Mass Gain or Muscle Strength in Healthy Middle-aged Adults

Isabel G. Martinez, M.S., Joseph W. Beals, M.S. (Ph.D), Sarah K. Skinner, M.S., Amadeo F. Salvador, M.S., Susannah S. Scaroni, Naiman A. Khan, M.S. (Ph.D), Nicholas A. Burd, M.S. (Ph.D)*

1Department of Kinesiology and Community Health, University of Illinois at Urbana - Champaign, Urbana, IL, USA
2Division of Nutritional Sciences, University of Illinois at Urbana - Champaign, Urbana, IL, USA

* Corresponding author: Nicholas A. Burd, E-mail: naburd@illinois.edu

Abstract

Introduction: Exercise training with higher dietary protein intake is proposed to offset age-related muscle mass and strength loss. Therefore, we examined the effect of manipulating dietary protein density with resistance training on muscle performance adaptations in untrained adults.

Methods: 22 healthy middle-aged adults (age: 51 ± 2 y, BMI: 27.4 ± 0.6 kg/m²) were randomized to consume protein at the Recommended Dietary Allowance (RDA; 0.8 – 1.0 g/kg/day) or twice the RDA (2×RDA; 1.6 – 1.8 g/kg/day) throughout a supervised 10-week progressive resistance training program. Participants consumed calorically-matched post-workout meal (214 Calories (KCAL) and a pre-sleep protein beverage (124 KCAL). Body composition was assessed by dual-energy x-ray absorptiometry (DXA) and performance was evaluated using one-repetition maximum (1RM) testing and a dynamometer for isometric and isokinetic contractions (MVC) pre- and post-intervention.

Results: Protein intake was higher in the 2×RDA group (1.79 ± 0.10 g/kg/day vs 1.17 ± 0.04 g/kg/day, P < 0.001). Whole body lean mass remained similar over time (P = 0.16) in both groups (4 ± 1% vs 1 ± 2%; P = 0.22). There were similar improvements over time (P < 0.0001) in both groups in 1RM for all upper and lower body exercises and knee strength dynamometry measures except for bicep curl (25 ± 4% vs 45 ± 7%, P < 0.05).

Conclusions: Training-induced gains in lean mass and muscle performance are not potentiated when consuming protein in far excess of the protein RDA in middle-aged adults. Thus, consuming protein slightly above the RDA is adequate to support training-induced muscle adaptations.

Keywords: Protein, Resistance training, Muscle, Performance, Aging