Improving of the Polymorphonuclear Cell Function after Vitamin C with Bioflavonoids Supplementation and Low-intensity Exercise in Type II Diabetes Mellitus Patients

Nisa Chuangchot (Ph.D)¹,²,₅, Wisitsuk Phoksawat², Amonrat Jumnainsong²,³, Chanvit Leelayuwat²,³, Naruemon Leelayuwat³,⁵

¹Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
²The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
³Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
⁴Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen University, Khon Kaen, Thailand
⁵Exercise and Sport Sciences Development and Research Group (ESRG), Faculty of Medicine, Khon Kaen University, Khon Kaen University, Khon Kaen, Thailand

Email: nisachuang@gmail.com

Abstract

Introduction: Polymorphonuclear cell (PMN) is defective in T2D with poor glycemic control (HbA1c ≥ 8.5%). The exercise program was shown to reduce the oxidative stress but amount of free radical remains abnormally high in T2D patients. We hypothesize that PMN function of T2D patients is improved by vitamin C and bioflavonoids (CB) supplementation and low-intensity exercise.

Methods: Fourteen participants were received both placebo and CB (Blackmores 1,000 mg/day) for 6 weeks in a randomized crossover, double-blinded study. Subjects performed 20 min of cycling (30% \(\dot{V}O_2\)peak). Blood samples were collected at rest, immediately- and 24h- after exercise. PMN function was determined and analyzed by flow cytometry. Heparinized blood was co-cultured fluorescein isothiocyanate (FITC) labeled \textit{S. aureus} bacteria for 15, 30 and 60 min to detect phagocytosis. The oxidative burst was performed after adding dihydroethidium (HE).

Results: After CB supplementation, there were significantly improved PMN phagocytosis and oxidative burst when compared to placebo at rest (P = 0.005 and P = 0.025, respectively). Low-intensity exercise had no effect on PMN functions at both CB and placebo groups. The combined effect of CB supplementation and low-intensity exercise shows an increase in PMN phagocytosis at immediately- (P = 0.012) and 24h- after exercise (P = 0.004). PMN oxidative burst demonstrates a significant increase at 24h- after exercise (P = 0.030) but it tends to increase at immediately after exercise (P = 0.050).

Conclusion: Prolonged CB supplementation effectively increases PMN function. Low-intensity exercise at a short-duration time had insufficient effect to alter PMN function.

Keywords: Polymorphonuclear cell, Vitamin C and bioflavonoids, Exercise